

Name:	Hour:	Date:

How many iPhones will be sold?

Here is the data of all iPhone sales during their opening weekends:

iPhone	Year	Units Sold (millions)
Original	2007	0.5
3G	2008	1
3Gs	2009	1
4	2010	1.7
4S	2011	4
5	2012	5
5C, 5S	2013	9
6, 6 Plus	2014	10
6S, 6S Plus	2015	13

- 1. Use stapplet.com to create a scatterplot of the data with year as the explanatory variable and units sold as the response. Sketch the scatterplot in the space above.
- 2. Describe the **form** of the distribution.
- 3. Use the applet to find the least squares regression line. Write the equation below and graph it on your scatterplot above.
- 4. Use the least squares regression line to calculate the residual for 2007. Interpret the residual.
- 5. Complete the table below.

Year	Actual Units Sold (millions)	Predicted Units Sold (millions)	Residual
2007	0.5		
2008	1		
2009	1		
2010	1.7		
2011	4		
2012	5		
2013	9		
2014	10		
2015	13		_

6. Graph the residuals on the axes below. This is called a **residual plot**.

- 7. For which points was the actual greater than the predicted? Which were less than predicted? Identify these on the graph.
- 8. Do you think the regression line is a good fit for the data? Why or why not? Explain using the residual plot.

Name:					Ho	ur:	_ Date:			
LSRL and Residual Plots										
Important Ideas:										
	(Check	(You	r Und	ersta	nding	:			
Fueleconomy.gov give back to 1984. The talk										
ten 2021 vehicles.		I	Γ	T		T	T	Γ		ı
City fuel economy (mpg)	14.4	24.3	27.2	29.9	20.4	28.8	20.9	23.2	28.6	25.4
Highway fuel economy (mpg)	25.5	37.4	36.5	45.5	28.7	46.1	33.6	38.3	41.3	35.3
					. 11					
a. Calculate the equ	ation of	the leas	st-square	es regre	ssion lin	ie.				
b. Make a residual plot for the linear model in Question 1.										
or mane a residual p										

c. What does the residual plot indicate about the appropriateness of the linear model? Explain

your answer.

