Name:	Hour:	Date:	

Can you predict SAT score from GPA?

How well can we predict SAT scores from students' grade point average (GPA)? Let's start by looking at data from a random sample of 10 Seniors form a high school in Michigan.

Regression Analysis: SAT versus GPA Predictor Coef SE Coef T P

Constant	724.4	88.0	8.23	0.000
GPA	169.0	32.0	5.29	0.001
s = 116.9	R - Sg = 77.8%	R-Sg(adj) = 75.	. 0%

- 1. Is this a positive or negative relationship? Explain.
- 2. Are there any unusual features of the scatterplot? Explain.
- 3. What is the form of the relationship? Explain.
- 4. What is the strength of the relationship? Explain.

Summary: Describe the relationship between GPA and SAT score for this sample of Seniors.

- 5. What is the equation of the least squares regression line (LSRL):
- 6. Interpret the slope of the LSRL.
- 7. Interpret the y-intercept of the LSRL.

Name: _____ Hour: ____ Date: ____

- 8. Predict the SAT score for a student who has a GPA of 3.4. Show work.
- 9. The student with a GPA of 3.4 got an actual SAT score of 1113. Calculate and interpret the residual.

10. What does the residual plot indicate about the use of a linear model for the data?

- 11. Interpret the standard deviation of the residuals (S).
- 12. Interpret the coefficient of determination (r²).
- 13. Do the data provide convincing evidence of a positive linear relationship between GPA and SAT for all Seniors at this high school?

Name:	Hour:	Date:

Two-Variable Analysis

· ·	
Important ideas:	
•	

Homework (AP Classroom)

A scatterplot of student height, in inches, versus corresponding arm span length, in inches, is shown below. One of the points in the graph is labeled A.

If the point labeled A is removed, which of the following statements would be true?

- A The slope of the least squares regression line is unchanged and the correlation coefficient increases.
- The slope of the least squares regression line is unchanged and the correlation coefficient decreases.
- The slope of the least squares regression line increases and the correlation coefficient increases.
- The slope of the least squares regression line increases and the correlation coefficient decreases.
- The slope of the least squares regression line decreases and the correlation coefficient increases.